How to calculate Hertz the frequency of each pipe

What is a Hertz? It is the SI unit of frequency, equal to one cycle per second.

 $v = \text{speed of sound in air (room temperature)}^{\sim} 330-340 \text{ m/s}$

 λ = wavelength (4 X's the length of the tube measured in meters) 10cm = .10 m

f = frequency in Hertz

The velocity of a sound wave (v) is equal to its frequency (f) times its wavelength. or

Frequency = velocity divided by wavelength $f = v/\lambda$

f = 340 m/s / (.10 m x 4)f = 340 m/s / .40 m = 850 Hertz

Pipe lengths ½" or ¾" PVC

•	Note	Length (cm)	Frequency (Hz)	COLOR	
•	F_1	23.6	349	BLACK 1	
•	G_1	21.0	392	PINK 1	
•	A_2	18.7	440	RED 1	
•	B_{b1}	17.5	446	GREEN 1	
•					
•	C_1	15.8	523	BLUE 1	
•	D_1	14.0	587	ORANGE 1	Only
•	E_1	12.5	659	YELLOW 1	Office
•	F_2	11.8	698	BLACK 2	cut
•	G_2	10.5	784	PINK 2	these 9
•	A_2	9.4	880	RED 2	
•	B_{b2}	9.2	892	GREEN 2	pipes
•	C_2	7.9	1046	BLUE 2	
•	D_2	7.0	1174	ORANGE 2	*
•					
•	E_2	6.2	1318	YELLOW 2	

Pipes F₂-D₂ six notes

 $F \ C \ C \ D \ D \ C \ B_b \ B_b \ A \ A \ G \ G \ F$

C C B_b B_b A A G C C B_b B_b A A G

F F C C D D C B_b B_b A A G G F

Pipes C_1 , D_1 , E_1 , G_2 - four notes

E D C D E E E D D D E G G

EDCDEEEEDDC

Pipes C₁ through G₂ five notes

EEEEEGCDE

F F F F E E E E D D E D G

EEEEEGCDE

FFFFEEEEGGFDC