How to calculate Hertz the frequency of each pipe

What is a Hertz? It is the SI unit of frequency, equal to one cycle per second.
$v=$ speed of sound in air (room temperature) $330-340 \mathrm{~m} / \mathrm{s}$
$\lambda=$ wavelength (4 X's the length of the tube measured in meters) $10 \mathrm{~cm}=.10 \mathrm{~m}$
f = frequency in Hertz

The velocity of a sound wave (v) is equal to its frequency (f) times its wavelength. or

Frequency = velocity divided by wavelength

$$
f=v / \lambda
$$

$\mathrm{f}=340 \mathrm{~m} / \mathrm{s} /(.10 \mathrm{~m} \times 4)$
$f=340 \mathrm{~m} / \mathrm{s} / .40 \mathrm{~m}=850$ Hertz

Pipe lengths $1 / 2^{\prime \prime}$ or $3 / 4^{\prime \prime}$ PVC

-	Note	Length (cm)	Frequency (Hz)	COLOR
-	F_{1}	23.6	349	BLACK 1
-	G_{1}	21.0	392	PINK 1
-	A_{2}	18.7	440	RED 1
-	$\mathrm{B}_{\mathrm{b} 1}$	17.5	446	GREEN 1
-				
-	C_{1}	15.8	523	BLUE 1
-	D_{1}	14.0	587	ORANGE 1
-	E_{1}	12.5	659	YELLOW 1
-	F_{2}	11.8	698	Only
-	G_{2}	10.5	784	BLACK 2
-	A_{2}	9.4	880	CINK 2
-	$\mathrm{B}_{\mathrm{b} 2}$	9.2	892	RED 2
-	C_{2}	7.9	1046	GREEN 2
-	D_{2}	7.0	1174	BLUE 2
-			ORANGE 2	pipese 9
-	E_{2}	6.2	1318	YELLOW 2

Pipes $F_{2}-D_{2}$ six notes

FFCCDDCB $B_{b} A A G G F$
$C \subset B_{b} B_{b} A A G C C B_{b} B_{b} A A G$

F FCCDDCBb B_{b} A A GGF

Pipes $C_{1}, D_{1}, E_{1}, G_{2}$ - four notes

E D C D E E E D D D E G G

EDCDEEEED DEDC

Pipes C_{1} through G_{2} five notes

E E E E E E E G C D E

FFFFFEEEEEDDEDG

E E E E E E G C D E

FFFFFEEEEGGFDC

