The 'algebra' of color ${ }^{\lambda}$

Key:

Red $=\mathrm{R}$	Green $=G$	Blue
Yellow $=\mathrm{Y}$	Cyan $=C$	Magenta $=\mathrm{B}$
White $=\mathrm{W}$	(or $\mathrm{R}+\mathrm{G}+\mathrm{B})$	Black $=$ Blk

LIGHT: (additive properties)

$R+G+B$	$=$ White (W)				
$R+B$	$=$ Magenta (M)	same as:			
$R+B$	$=$ Cyan (C)		$=$ White $(R+B+G)-G$		
$R+G$		$=$ Yellow (Y)		\quad	Y White $(B+G+R)-R$
:---					

ก So what would Yellow plus (and) Cyan look like?
Yellow $(G+R)+$ Cyan $(G+B)=G+R+G+B$

$$
\begin{aligned}
& =G+\{R+G+B\} \\
& =G+\text { White =a green-ish White }
\end{aligned}
$$

§ Give these a try...
a) Yellow plus Magenta
b) Magenta plus Cyan
c) Yellow plus Cyan plus Magenta

PIGMENT: (subtractive properties)

Red = White Illuminating light minus Green and Blue (actually all colors EXCEPT RED!) Green = White Illuminating light minus Red and Blue (all colors EXCEPT GREEN) Blue $=$ White Illuminating light minus Red and Green (all colors EXCEPT BLUE)

NOTE: The illuminating light is usually white, but can be a different color (RED, BLUE, or GREEN, etc...). We have an activity called "What color is this?" using various colored foam rectangles illuminated with a RED light.

What would Red pigment + Green pigment look like illuminated with White light?

Red + Green = ???

Red (remove Greens and Blues) + Green (remove Reds and Blues)
Red (-G-B) + Green (-R - B)
So: Red + Green pigments in white light would be...

```
Red + Green pigments \(=\) White light \((-G-B)+\) White light \((-R-B)\)
    \(=\) White light \(-(R+G+B)-B^{*}\)
    \(=\) (Illuminating) White light - White \(-B^{*}\)
    (* cannot take B away if there is no light remaining, can you?)
    = No light or Blk (Black)
```

Red + Green = No light reflected or Black
(depending on how good the Red and Green pigments are!)

Because pigments are 'subtractive' (that is, they absorb the other colors), when (many) pigments are added/mixed together you usually end up with something that is dark and very uncolorful.

Ћ Questions, comments, and suggestions please email tien@ligo-la.caltech.edu

[^0]
[^0]: * LIGO-SEC/ T. Huynh-Dinh 2012 / modified Katzman 2015

